A Quick Tour of Your Workbook
\qquadI
THEME I Hitting the Numbers Road 3
Sectionl 5

- Representing Numbersup to 10000006
- Place Value in a Number 8
- Decomposing a Number 10
- Comparing Numbers 12
IUseRReasonting 14
SETION 2 15
- Multiplying a 3-Digit Number by a 1-Digit Number 16
- Multiplying a 3-Digit Number by a 2-Digit Number 17
IUseRReasonting 22
SETTION 3 23
- Exponential Notation 24
- Powers of 10 24
- Divisibility Rules 28
- Decomposing a Number into Prime Factors 31
IUSeREasonting 34
Stction 4 35
- Estimating and Measuring Angles in Degrees 36
- Triangles 38
IUseReasonting 42
S:CTION 5 43
- The Different Meanings of Fractions 44
- Equivalent Fractions 47
- Reducing Fractions. 49
IUSeReasonting 52
DMEREChotes 53
Rentews of Theme I 55
IUse Reasonting 60
GAME: 62
TIME
THEME 2 Focus on Science 63
section 6 65
Dividing a Number by a 2-Digit Divisor 66
IUseReasonting 72
stction 7 73
- Ordering Fractions with the Same Numerator 74
- Ordering Fractions When One Denominator Is a Multiple of the Others 75
IUseReasonting 78
SECTION 8 79
- Adding and Subtracting Fractions
When One Denominator Is
a Multiple of the Others 80
- Multiplying a Natural Number
by a Fraction 85
IUseRReasonting 88
SECTION 9 89- Number Patterns90- Equivalent Expressions92
IUse Reasoning 94
SETTION 10 95
- Decimals up to the Thousandths Place. 96
- Decomposing a Decimal Number 98
- Comparing Decimal Numbers 98
- Equivalent Decimal Expressions 101
IUseReasoning 102
DMEREChotes 103
Review of Theme 2 105
IUseReasoning 110
GGAME ||2
TIME:
TIME:
Looking Out for Planet Earth ||3
THEME 3
Stction II ||5
- Multiplying and Dividing by 10,100 and 1000 116
- Measuring Length ||8
-IUseRReasonting 122
SECTION 12 123
- Rounding Natural Numbers 124
- Rounding Decimal Numbers 126
- Multiplying a Decimal Number by a Natural Number 128
IUseReasoning 130
S:CTION 13 131
- Decimals, Fractions and Percentages. 132
- Interpreting Broken-Line Graphs 134
- Circles 136
- Interpreting Circle Graphs 138
IUseReasoning 140
S:CTION IH 141
Decimals, Fractions and Percentages on a Number Line 142
IUse Reasoning 144
SETIONIS 145
Probabilities 146
IUseReasonting 150
DMEREChotess 15
Revitew of Theme 3 153
IUseReasonting 158
GGAME: 160
Math Workout 16

Matitiog the

 NIy 0 bejes Boor1Use all the digits on the licence plates to form the biggest and smallest numbers possible.

2 How many kilometres will the odometer show by the time the car reaches Québec?

3 If the car travels at a constant speed of $110 \mathrm{~km} / \mathrm{h}$, how many kilometres will it cover in 30 min ?

QuÉBEC
 135 km

In OIden

Over the millennia, human civilizations have had different number systems, some more efficient than others. People have used a variety of objects to help them count, for example, pebbles, drawings, symbols, bones and pieces of wood. However, it is difficult to calculate large quantities with systems like these. That is why the discovery of place value was so important in the history of mathematics.

Who'd Have? THOUCHT.

Are you familiar with the tradition of throwing a coin in a fountain for good luck or to make a wish come true? The Trevi Fountain, in Rome, Italy, fills up with coins so fast that it has to be vacuumed several times a week! Over a year, the cleaners collect an average of 1.5 million euros in coins. The money is handed over to a charitable organization that uses it to finance a variety of good works.

Find the value of the green backpack.

Alike, Yet Different

HTh	TTh	Th	H	T	0
5	7	8	0	7	5

What is the same and what is different in the 3 pictures?

Cutting and pasting $0 s$

Flex your math muscles!

Ilearin

Representing Numbers up to 1000000

You can represent numbers in different ways.
Here are 3 ways to represent the number 865342 .
With digits in a place value chart

	Millions	Thousands			Ones		
	Millions (M)	Hundred Thousands (HTh)	Ten Thousands (TTh)	Thousands (Th)	Hundreds (H)	Tens (T)	Ones (0)
		8	6	5	3	4	2
You read the number 865342 as "eight hundred sixty-five thousand three hundred forty-two."	You read the number 865342 as "eight hundred sixty-five thousand three hundred forty-two."						

865342

$$
8650 \times 100=10 \times 5 \times 5+4 \times 10
$$

DPractise

1 Write the numbers represented by the money and the abacuses.
a)

b)

c)

2 Find 2 possible representations of the following sums of money using paper money and coins. You cannot use a bill or a coin if there is an X in its column.

	${ }_{100} 18$		20.511	50	5¢M	(3)	(8)
(ramill \$135648	1356		2		X	3	2
	X	2500	32	1000	1		3
a) $\$ 167704$		X				X	
	X		X				
b) $\$ 220267$				X		X	
	X	X					X

3 These are the populations of several imaginary towns. Write the population of each town, including the number of new births.
a) Squishton:

349 new births

c) Leverburg:

279 new births
\square
b) Prettiville:

125 new births
\square
d) Jonastown:

88 new births
\square

Ilearin

Place Value in a Number

The value of a digit in a number depends on the position of the digit. In the number 865342 , each digit has a specific value according to its place.

Place	Millions (M)	Hundred Thousands (HTh)	Ten Thousands (TTh)	Thousands (Th)	Hundreds (H)	Tens (T)	Ones (0)
Digit		8	6	5	3	4	2
Value		800000	60000	5000	300	40	2

If you used hundreds flats to represent this number, you would need 8653 of them! Do you think there are that many flats in your school?

DPractise

1 Write the place and value of the 5 in each number.

	Number		Place
a)	257190		
b)	384652		
c)	820571		
d)	475193		
e)	599021		

2 Write how many hundred thousands (HTh), ten thousands (TTh), hundreds (H) and tens (T) there are in each number.

3 Find the matching number for each statement below.
652885 629427
685842
684903
a) This number contains 69 ten thousands.
b) The 8 in this number has a value of 80 .
\square
\square
c) This number contains 629 thousands.

d) The 9 in this number has a value of 900 .

4 Find the result of each operation.
a) 87 thousands $+46782=$
\square
b) $920000-19$ hundreds $=$
\square

5 A group of tourists gave their guide $\$ 1147$ to pay for an activity they wanted to do. The money they gave the guide included only one coin and no $\$ 20$ bills. How can you represent the money the guide received?
\square

Decomposing a Number

Decomposing a number means representing it in an equivalent form.
You can decompose a number in different ways, such as breaking it down by the place values of its digits (expanded form). A place value chart is useful for finding the expanded form of a number.

Place	\longrightarrow	M	HTh	TTh		Th		H		T	0
Digit	\rightarrow		5	8		3		9		2	6
Value	\rightarrow		500000	80000		3000		900		20	6
			+	TTh	+	3 Th	+	9 H		2 T	$+60$
583926		$\times 100$	$0)+(8 \times$	000)		(3×1000)		(9×100)		(2×10)	$+(6 \times 1)$
		500	+ 80	000	$+$	3000		900		20	+ 6

There are other ways to decompose 583 926, for example:

583926
$500000+83000+926$
$583000+900+26$

Decomposing numbers makes it easier to multiply them.

$$
\begin{aligned}
837 \times 7 & =(800 \times 7)+(30 \times 7)+(7 \times 7) \\
& =5600+210+49 \\
& =5859
\end{aligned}
$$

IPraciss

1 Find each number that has been decomposed. Then circle the 2 equivalent decomposed forms.
a)
$5 \mathrm{HTh}+1900 \mathrm{~T}+24 \mathrm{Th}$
b)
$4000+200+900+52$ TTh
\square
\square
c) \square
d) $20000+19 T h+4 T h+500000$

2 Find the matching number for each decomposed form below.

469967

470690
469070
470760
471960
a) $600+400000+90+70000=$
b) $69000+400000+70=$
c) $7 \mathrm{TTh}+9 \mathrm{H}+4 \mathrm{HTh}+6 \mathrm{~T}+1 \mathrm{Th}=$
d) $76 \mathrm{~T}+47 \mathrm{Th}=$
\square
\square
\square

e) $(9 \times 100)+(69 \times 1000)+(6 \times 10)$ $+(4 \times 100000)+(7 \times 1)=$

3 Complete the decomposed form of each number.
a) $385900=59 \mathrm{H}+2 \mathrm{HTh}+16 \mathrm{Th}+$ \square
b) $837195=7000+90+800000+100+$
c) $453897=38 \mathrm{H}+97 \mathrm{O}+35 \mathrm{TTh}+$ \square
d) $69425=($
 $\times 10)+($ \square $\times 1$)
e) $846214=(84 \times$ \square) $+($ \square $\times 10)+4$
f) $654800=(654 \times$ \square) $+($ \square $\times 100$)

Comparing Numbers

You compare numbers to find out whether they are equal (=) or whether one is greater (>) or less (<) than the other.
A place value chart can help you quickly compare 2 numbers.
If the 2 numbers have the same number of digits, you start by comparing the digits with the greatest place value. If these digits are of equal value, then you compare the digits to the right.

$583926>582926$

Reminder

You can also use a number line to compare numbers.
The distance between 2 markings is called the interval.
Here, the interval is 20000.

$260000<300000$ because 260000 comes before 300000 .
$300000>260000$ because 300000 comes after 260000 .

DPractise

1 Write the numbers in decreasing order.
a) 220202

202200
\square

b) \square
\square

222002
659956

200220	222202
\square	\square
695956	695596
\square	

2 Find the interval on the number line. Then locate the numbers on the line.

3 In each group, circle the 2 numbers that would be closest to each other on a number line.

a)	652890	655990	675890	656200	650890	659200
b)	900000	900700	910900	899990	900020	910000
c)	438002	488002	655990	500000	675002	408990

4 Do the operations, write the results and compare them using the correct symbol: <, > or $=$.
a) $989742-300 \mathrm{Th}$

b) \square

$127900+220$ Th

Cedar Point, in the United States, is a huge amusement park that is home to 70 rides, including 17 roller coasters.

These are the numbers of visitors who rode the roller coasters during the past weekend:

Saturday $24 \mathrm{Th}+9 \mathrm{TTh}+8 \mathrm{H}+6 \mathrm{~T}+4 \mathrm{O}$

70 rides, 17 roller coasters, thousands of visitors, a 3-day weekend: Do you really need all this information?

Sunday $\leftrightharpoons(6 \times 100)+(3 \times 10000)+(9 \times 10)+(2 \times 100000)+8$

Next weekend, the park manager expects 500000 visitors to ride the roller coasters. How many more visitors are expected to ride the roller coasters next weekend compared to last weekend's number?

Next weekend, \square more visitors are expected to ride the roller coasters.

Maiturir

SECTION 2

What Do You See?

- - - -	- - - -	
- -* - -	- - - ๑ -	- - - ๑ -
- - - - -	-○○ - -	- - - - -
\bullet - - - -	- - - - -	- - - - -
- - - - -	- - - - -	- - -
- - - -	- - - -	- - - -
- - - -	- - - -	- - ๑ - -
- - - - -	- - - - -	- ๑ •
\bigcirc - - -	- - - -	- -
- - - -	- - - -	- -
- - - - -	- - - - -	

Arithmetic

Cutting and pasting $0 s$

Flex your math muscles!

Ilearn

Multiplying a 3-Digit Number by a 1-Digit Number

The conventional process for multiplying numbers is also called a multiplication algorithm.

$$
346 \times 3=\text { ? }
$$

Steps

(1) Multiply the ones by the ones.

$$
3 \times 6 \text { ones }=18 \text { ones }
$$

Carry the resulting ten.
(2) Multiply the ones by the tens
3×4 tens $=12$ tens
and add the carried number, which makes 13 tens.
Carry the resulting hundred.
(3) Multiply the ones by the hundreds
3×3 hundreds $=9$ hundreds and add
the carried number, which makes 10 hundreds.

$$
346 \times 3=1038
$$

Estimate the product: $300 \times 3=900$. After calculating the product, compare it with your estimate.

The product (1038) is close to the estimate (900).

DPractise

1 Do the multiplications.
a)

	4	5	6
\times			4

b)

	8	1	0
\times			7

c)

| |
| ---: | | | 9 | 2 |
| :--- | :--- | :--- |
| \times | | |

Multiplying a 3-Digit Number by a 2-Digit Number

This is the conventional process for multiplying a 3-digit number by a 2-digit number.

$$
346 \times 23=?
$$

Steps

(1) Multiply each digit in the number 346 by 3 ones, following the same steps as when you multiply by a 1 -digit number.

(2) Multiply each digit in the number 346 by the tens in the 2 nd factor (2 tens).

2 tens $\times 6$ ones $=120$ ones
Align the 20 with the ones and remember to carry the 1 (which represents 10 tens).
20×4 tens $\quad=80$ tens +10 tens (carried)
$=90$ tens $=9$ hundreds
20×3 hundreds $=60$ hundreds $=6$ thousands
(3) Add the 2 partial products.

$346 \times 23=7958$

Th	\mathbf{H}	T	$\mathbf{0}$
	3	4	6
\times		2	3
1	0	3	8
+6	9	2	0
7	9	5	8

The product (7958) is close to the estimate (7000).

1 Do the multiplications.

a)

d)

b)

e)

c)

f)

2 Solve the problems.
a) The distance between Montréal and Québec is 233 km . The distance between Montréal and Mexico City is about 16 times as far. What is the distance between Montréal and Mexico City?
\square
b) A 38-storey hotel is being built in Paris, France. There will be 112 rooms on each floor. How many rooms will there be in the hotel?
\square

3 Do the multiplications. Then colour the results in the grid below. The number left at the end is the secret number.
a)
b)

e)

c)
d)

4 Solve the problems.
a) This week, 28 groups of 54 people reserved tickets
for a Broadway musical in New York City. The theatre
a) This week, 28 groups of 54 people reserved tickets
for a Broadway musical in New York City. The theatre contains 32 rows of 55 seats. How many seats are still available?
\square
 \square
b) Each issue of the magazine Distant Travels contains 75 pages. How many pages are there in 255 issues of the magazine?
\square
c) There are 8 flights a day between Toronto and New York. Each flight carries an average of 142 passengers. About how many passengers fly between Toronto and New York in a 2-week period?

\square

5 Using digits 0 to 9 , complete the operations so that they are correct.
a)

b)

c)

d)

6 Solve the problems.
a) A train of 23 cars travels between Québec and Montréal 5 times a day. Each car contains 42 seats. If all the seats are taken on each trip, how many passengers does the train carry in a day?
\square
b) It is harvest time at the Frutti family farm in Niagara Falls, Ontario.

The farm has 25 rows of fruit trees. In each row, pickers filled 340 crates of fruit. The neighbouring farm harvested 5 times as much fruit.
How many crates of fruit did the neighbouring farm harvest?
\square
c) During a 6-month trip in Africa, Olivia observed 130 species of plants. This was 12 times fewer species than when she went to South America for 2 years. How many plant species did Olivia observe during her travels in South America?

Remember to identify your work by question.
\qquad

IUse Reasonting

 Mr. Papadopoulos has owned an olive grove for several years.\Rightarrow His olive grove contains 152 rows of 12 olive trees.
\Rightarrow Of these olive trees, 11 hundreds are still too young to produce fruit.

The other trees each produce 32 kg of olives.

Mr. Papadopoulos has developed different olive-based products over the years:

He uses 15000 kg of olives to make olive oil.
75 hundreds of kilograms of olives are packaged for direct consumption.
The rest of the olives are used to make soap.

How many kilograms of olives does Mr. Papadopoulos use to make soap?

Mr. Papadopoulos uses \square of olives to make soap.

MBith Chat

Section 3

Which One Doesn't Belong?

9×27

3^{5}
5^{3}

$3 \times 3 \times 3 \times 3 \times 3$

Exponential Notation

Exponential notation is a way of expressing numbers by using exponents. It is a simpler way of writing the product of a factor multiplied any number of times by itself.

Reminder

A number to the power of 2 is a square number.
A number to the power of 3 is a cube number.

The Earth's mass is 5974200000000000000000000 kg . It is simpler to say that the Earth's mass is $5.9742 \times 10^{24} \mathrm{~kg}$.

Powers of 10

Powers of 10 represent place values in our number system.

Place \rightarrow	M	HTh	TTh	Th	H	T	0
Power	10^{6}	10^{5}	10^{4}	10^{3}	10^{2}	10^{1}	10^{0}
Value \rightarrow	1000000	100000	10000	1000	100	10	1

You can use the powers of 10 to decompose a number and write it in expanded form.
Frample: $\left(3 \times 10^{5}\right)+\left(4 \times 10^{4}\right)+\left(5 \times 10^{3}\right)+\left(8 \times 10^{2}\right)+\left(4 \times 10^{1}\right)+\left(2 \times 10^{0}\right)=345842$

It is important to remember that

- a number to the power of 1 is always equal to itself
- a number to the power of 0 is always equal to 1

Here is an example to show you why:
$5^{3}=125$
$5^{2}=25$, which is 125 divided by 5
$5^{1}=5$, which is 25 divided by 5
$5^{0}=5$ divided by 5 , so 1 .

$$
\begin{aligned}
& 5^{1}=5 \\
& 5^{0}=1
\end{aligned}
$$

DPractise

1 Mae says: " 3^{4} is the same as 3×4." Is she right?
Explain your answer.
\square
2 Write the repeated multiplication that matches each expression.
Then calculate the power.
Repeated Multiplication
Example: 6^{2}

6×6
36

a) 2^{4} \square
\square
b) 10 squared \square
\square
c) 7 cubed \square
\square
d) 3 to the power of 5 \square
\square
e) 9 to the power of 4 \square
\square
f) 10 to the power of 6 \square
\square

3 Calculate the powers and compare them using the correct symbol: $<,>$ or $=$.
a) $9^{2} \square 2^{9}$
b) $10^{5} \square 1000$
c) $3^{5} \square 342$
d)
$125 \square 5^{3}$
e)
$7^{3} \square 3^{7}$

4 Calculate the result of each operation.

Calculation
Result

Example: $\quad 5^{2}+2^{3}$
a) $3^{3}+3^{2}$
b) $6^{2}+7^{3}+8^{2}$

c) $5^{3}-4^{2}$
d) $2^{5}-5^{2}$
e) $7^{1}+2^{4}$

\square
-

$=$

5 Calculate the result of each multiplication.
\square
Example: $7 \times 10^{2}=7 \times 100=700$
a) $4 \times 10^{4}=$

a) $4 \times 10^{4}=$
b) $2 \times 10^{5}=$
c) $12 \times 10^{3}=$
d) $5 \times 10^{1}=$
e) $60 \times 10^{2}=$
f) $49 \times 10^{4}=$
g) $684 \times 10^{0}=$
h) $741 \times 10^{2}=$

6 Write the number that matches each expanded form.
a) $\left(6 \times 10^{5}\right)+\left(8 \times 10^{4}\right)+\left(7 \times 10^{3}\right)+\left(5 \times 10^{2}\right)+\left(9 \times 10^{1}\right)+\left(4 \times 10^{0}\right)=$
\square
b) $\left(2 \times 10^{3}\right)+\left(8 \times 10^{2}\right)+\left(2 \times 10^{5}\right)+\left(4 \times 10^{4}\right)+\left(5 \times 10^{9}\right)=$
\square
c) $\left(7 \times 10^{1}\right)+\left(3 \times 10^{2}\right)+\left(2 \times 10^{3}\right)+\left(6 \times 10^{4}\right)+\left(1 \times 10^{5}\right)=$
\square

7 Match each number to its expanded form.
a) 36247 - $\left(8 \times 10^{4}\right)+\left(2 \times 10^{3}\right)+\left(5 \times 10^{2}\right)+\left(9 \times 10^{1}\right)+\left(7 \times 10^{0}\right)$
b) 790263

- $\left(3 \times 10^{4}\right)+\left(6 \times 10^{3}\right)+\left(2 \times 10^{2}\right)+\left(4 \times 10^{1}\right)+\left(7 \times 10^{0}\right)$
c) 82597 - $\left(7 \times 10^{5}\right)+\left(9 \times 10^{4}\right)+\left(2 \times 10^{2}\right)+\left(6 \times 10^{1}\right)+\left(3 \times 10^{0}\right)$
d) $200200 \bullet\left(2 \times 10^{5}\right)+\left(2 \times 10^{2}\right)$

8 The Gulf of St. Lawrence has an area of $236 \times 10^{3} \mathrm{~km}^{2}$.
It empties into the Atlantic Ocean, which has an area of $1064 \times 10^{5} \mathrm{~km}^{2}$.
Write the areas of the 2 bodies of water in standard form.
Area of the Gulf of St. Lawrence:
Area of the Atlantic Ocean:

\square
9 Russia, the largest country in the world, has an area of about $17000000 \mathrm{~km}^{2}$.
Canada, the 2nd largest country, has an area of about $10000000 \mathrm{~km}^{2}$.
Write the areas of the 2 countries in exponential notation.

Area of Russia:
\square

Area of Canada:
\square

Divisibility Rules

Divisibility rules help you find out quickly whether a number can be divided entirely by another, which means there is no remainder.

A Number Is Divisible by	Divisibility Rules	Examples
2	if its last digit is even, which means it ends in $0,2,4,6$ or 8 .	324
3	if the sum of its digits is divisible by 3 .	$\begin{gathered} 4572 \\ 4+5+7+2=18 \\ 18 \text { is divisible by } 3 . \end{gathered}$
4	- if its last 2 digits are 0 s ; or - if the number formed by its last 2 digits is divisible by 4; or - if the number formed by its last 2 digits is divisible by 2 , twice in a row.	$\begin{gathered} 6400 \\ 624 \\ \\ 788 \\ 88 \div 2=44 \\ \text { and } 44 \div 2=22 \end{gathered}$
5	if its last digit is 0 or 5 .	345,750
6	if it is divisible by 2 and 3 ; in other words, if it is an even number and the sum of its digits is divisible by 3 .	$\begin{gathered} 348 \\ 3+4+8=15 \end{gathered}$ 15 is divisible by 3 .
8	- if its last 3 digits are 0 s; or - if the number formed by its last 3 digits is divisible by 8 ; or - if the number formed by its last 3 digits is divisible by 2 , three times in a row.	$\begin{gathered} 7000 \\ 6824 \\ 824 \div 8=103 \\ 2432 \\ 432 \div 2=216 \\ 216 \div 2=108 \\ 108 \div 2=54 \end{gathered}$
9	if the sum of its digits is divisible by 9 .	$\begin{gathered} 4572 \\ 4+5+7+2=18 \\ 18 \text { is divisible by } 9 . \end{gathered}$
10	if its last digit is 0 .	3640

You can use divisibility rules to find all the divisors of a number. Then you can list the divisors in pairs of factors.

These are the divisors of 36 :
$(1,36)(2,18)(3,12)(4,9)(6,6)$.

A tip for writing the divisors of a number in order is to imagine a rainbow that matches the pairs of factors, beginning with 1 .
Check whether the number is divisible by 2 , then by 3 and so on.

DPratise

1 a) Circle the numbers that are divisible by 4 .

53848	65788		48564
	752974	467325	
211011		32000	
44838	23604	196348	85432

b) Draw an X on the numbers that are divisible by both 4 and 8 .

2 Circle the statement that is true.
a) A number that can be divided by 4 can also be divided by 8 .
b) A number that can be divided by 8 can also be divided by 4 .

3 Fill in the table.

Example: 75036
a) 685737
b) 900328
c) 754932
d) 345954
e) 137139

Number Divisible by		
$\mathbf{2}$	3	6
\times	\times	\times

4 Draw an X on the numbers that are divisible by 3 . Circle the numbers that are divisible by 9.

189999	127435	39396	869535	783431
900245	769999	35814	24612	696987

5 Find all the divisors of each number.
a) 42 : \square
b) 72 : \square
c) 54 :

d) 63 : \qquad
6 Answer the questions using the following numbers. You can use numbers more than once.

14625	6372	134328	6348	81700	40121	22840

a) Which number is divisible by $2,4,5,8$ and 10 ? \square
b) Which number is divisible by $2,3,6$ and 9 ? \square
c) Which numbers are divisible by 2,3 and 6 , but not by 9 ? \square
d) Which number is divisible by 3 and 9 , but not by 6 ?

e) Which numbers are divisible by 2 and 4 , but not by 8 ? \square
f) Which number is not divisible by $2,3,4,5,6,8,9$ and 10 ? \square
7 Between 1700 and 1800 cyclists have registered for the Charlevoix bike rally. Groups may be made up of $2,4,5$ or 10 cyclists, but not 3 or 8 . How many cyclists in all have registered for the rally?

Ilearn

Decomposing a Number into Prime Factors

Factors are numbers you multiply to get a product.

$$
2 \times 35=70
$$

The factors of a number form pairs. Each number in a pair is a divisor of the product. The divisors of 70 are $\{1,2,5,7,10,14,35,70\}$. Its prime factors are 2,5 and 7 .

You can decompose a number into prime factors by drawing a factor tree. To do this, keep decomposing factors until they are all prime numbers. This is called prime factorization.

For example, to decompose 740 into prime factors:

$740=2^{2} \times 5 \times 37$
If prime factors appear more than once in a factorization, write them in exponential notation. Always write the factors in increasing order.

Remember that a prime number has only 2 divisors: I and itself.

When all the factors are prime numbers, you have finished the prime factorization.

DPractise

1 Complete Mara's game board. It must contain all the prime numbers between 0 and 100 .

2 Decompose each number into prime factors. In the last box, cross out the exponential expression that doesn't match one of the factorizations.
a)
120
b) 369
c)

162

Exponential Expressions

3 Indicate whether the statements are true or false.
a) All prime numbers are odd.
b) There are 25 prime numbers between 0 and 100 .
c) 1 is a prime number.
d) 47 and 49 are prime numbers.
True
False
\square
\square
\square
\square
\square
\square

e) If a number greater than 2 is not a prime number, then it is a composite number.
f) All prime numbers have only 2 divisors.
g) 2^{5} represents the prime factorization of 32 .
\square
\square
\square
\square
\square
\square

4 Decompose the numbers into prime factors using the factor trees provided.
Write the results in exponential notation.
a)

b)

\square
$84=$ \square
c)

d)

\square
\square
e)

f)

The number of participants will be between 450 and 480 .
For certain activities, the group must be divided into 6 or 9 equal teams.

The field trip will cost $\$ 5^{2}$ per participant.
Luke must use $\$ 8165$ of the fees collected to pay for the participants' transportation and lunch.

The rest of the money will be donated to a foundation that pays for the park maintenance.

Luke thinks he will be able to donate $\$ 4000$ to the foundation. Is he right? Explain your answer.

\square
\square No because \qquad

Matid chat

Alike, Yet Different

Estimating and Measuring Angles in Degrees

An angle is a geometric figure formed by 2 rays that start at the same point. The point is called the vertex of the angle.

An angle is identified by the symbol \angle and the letters labelling the rays. In the example to the right, the angle is identified as $\angle \mathrm{ABC}$ or $\angle \mathrm{CBA}$. The letter in the middle matches the vertex of the angle.

Different types of angles are defined by their measure in degrees $\left({ }^{\circ}\right)$.

A protractor is a tool for drawing and measuring angles in degrees.
You will find 2 scales of 0° to 180° on this measuring instrument.
Follow these steps to measure an angle in degrees:

Observe the angle. Since it measures less than 90°, it is an acute angle.
(1) Place the origin of the protractor on the vertex of the angle.
(2) Place the base line of the protractor on one of the rays of the angle, aligning the ray with 0°.
(3) Starting from 0°, follow the degree markings up to the 2nd ray of the angle. The marking at the $2 n d$ ray equals the measure of the angle: here, it is 50°.

1 Identify the type of angle (acute, obtuse or right) indicated in each polygon. Then measure the angle with your protractor.
a)

b)

Type: $\quad \square$
Type: \square
Measure: \square
Measure: \square
c)

d)

\square
Type: \square
Measure: \square

2 Observe the simplified plan of the Pentagon, an important building near Washington, in the United States. Identify the type of each angle and write its measure.

Type
Measure
Angle A: \square
\square
Angle B:

\square
Angle C: \square
\square
Angle D: \square
\square

Triangles are 3 -sided polygons. The sum of the 3 interior angles of a triangle is always 180°. Triangles are classified by the characteristics of their sides and their angles.

These are different types of triangles:

IPractise

1 Indicate whether the statements are true or false.
a) An equilateral triangle has 3 acute angles.
b) The 3 sides and 3 angles of a scalene triangle are congruent.
c) A right triangle can contain an obtuse angle.
d) A right angle measures 45°.
e) A triangle cannot have more than one obtuse angle.

2 a) Observe the figure and identify the type of each triangle below.

- $\triangle B C D$: \square
- $\triangle \mathrm{AEF}$:
- $\triangle B C E:$ \square
b) Complete the sentence without measuring the figures.

Angle BAE measures \square angle FEG measures and segment FC measures \square
\square ,

3 Observe the figure and answer the questions. Use your ruler and protractor.
a) What do triangles ABC and DEF have in common?

b) What do triangles CIH and EIJ have in common?

c) What do triangles GDH and GBL have in common?

4 Measure the sides of each triangle. Then fill in the table below.

Type of Triangle	Triangle Number	Number of Acute Angles	Number of Obtuse Angles	Number of Right Angles
Equilateral				
Isosceles				
Scalene right				
Isosceles right				
Scalene				

5 a) Measure the following angles in the figure using your protractor.

- $\angle \mathrm{DCE}$ \square
- $\angle \mathrm{ECF}$ \square
- $\angle \mathrm{DCF}$

- $\angle \mathrm{FCB}$

- $\angle \mathrm{DCB}$ \square

b) How can you relate the measure of angle DCB to the measures of angles DCE, ECF and FCB?
\square
6 Draw 3 lines in the triangle below to form other triangles.
Follow these rules:
- The new triangles must not contain any obtuse angles.
- There must be at least one right triangle.

How many triangles did you form? \square

ITsarracsoution

Aunt Nadia has just come home from a trip to Barcelona. She was highly impressed by the Park Güell and the works by Catalan architect Antoni Gaudí .

Now Aunt Nadia wants to make a mosaic out of ceramic triangles on her coffee table. According to her sketch, she needs

How much will the ceramic triangles for Aunt Nadia's mosaic cost?
\square
The ceramic triangles for Aunt Nadia's mosaic will cost \square

It's Up to You

The Different Meanings of Fractions

A fraction usually represents the relationship between a part of a whole (the numerator) and the whole (the denominator), which has been divided into equivalent parts.

The whole can be a single whole (only one object) or a collection (a group of objects).

You read the fraction $\frac{3}{8}$ as "three eighths."
Single
whole

Collection

Representation on a number line

$\frac{3}{8} \circlearrowleft$

$\frac{11}{8} \fallingdotseq$

$\longleftarrow \frac{11}{8} \circlearrowleft$

Numerator < Denominator
Fraction < 1

Numerator > Denominator
Fraction > 1

A fraction can also express a ratio. It then represents the comparison of 2 quantities in the same collection.

In this collection, there are 3 backpacks for 4 suitcases.

The ratio is written as $3: 4$.

DPractise

1 Observe the objects. Then circle the correct fraction to complete each statement below.

2 Write the fraction represented by the coloured part of each figure.
a)

b)

c)

\square
d)

3 Locate the fractions on the number lines.
a)
 $\frac{6}{5}$ $\frac{1}{5}$ $\frac{3}{5}$

b) $\frac{2}{3}$ $\frac{4}{3}$ $\frac{1}{3} \quad \frac{5}{3}$

4 The average crew on a commercial flight consists of 2 pilots and 6 flight attendants. Write the ratio of pilots to flight attendants.
\square
5 While wrapping a parcel, Maggie cuts a piece of string that represents $\frac{2}{7}$ of the entire string.
Draw the entire string and write its length.

6 Answer the questions.
a) If a whole equals 12 tokens, how many tokens represent $\frac{1}{3}$? \square
b) If 6 tokens represent $\frac{1}{3}$ of the whole, what is the whole? \square
c) If a whole equals 8 tokens, what fraction do 6 tokens represent? \square
d) If a whole equals 9 tokens, how many tokens represent $\frac{5}{3}$? \square

Equivalent Fractions

Equivalent fractions are fractions that represent the same value in relation to a whole.

$\frac{1}{2}$																							
$\frac{1}{4}$						$\frac{1}{4}$																	
	12	$\frac{1}{12}$	12																				
$\frac{1}{24}$			$\frac{1}{24}$																				

$\frac{1}{2}=\frac{2}{4}=\frac{6}{12}=\frac{12}{24} \quad$ These fractions are equivalent because $\frac{1}{2}=\frac{2}{4}=\frac{6}{12}=\frac{2}{24} \quad$ they all represent half of the surface.

To find a fraction that is equivalent to a given fraction, you can

- multiply the numerator and denominator of the given fraction by the same number

- divide the numerator and denominator of the given fraction by the same number

There are an infinite number of equivalent fractions for any given fraction.

IPractise

1 Write 2 equivalent fractions to represent the red airplane tickets on the left and the blue suitcases on the right.
a)

b)

2 Colour the correct number of squares to represent each fraction. Match each fraction on the left to the equivalent fraction on the right.
a)

-

b)

$\frac{12}{20}$

c)

- $\frac{12}{36}$
d)

-

-
-

3 Write each of the following fractions in the correct line below to form groups of equivalent fractions.

$\frac{3}{5}$ $\frac{40}{60}$ $\frac{1}{5}$ | $\frac{9}{15}$ | $\frac{15}{75}$ |
| :--- | :--- | | $\frac{2}{3}$ | $\frac{36}{60}$ |
| :--- | :--- | $\frac{30}{45}$ $\frac{10}{50}$

a)
$\frac{18}{30}$ \square

\square
b) $\frac{10}{15}$ \square
\square \square
c) $\frac{5}{25}$ \square

learn

Reducing Fractions

A fraction that is reduced to its simplest form, or lowest terms, is called an irreducible fraction. In an irreducible fraction, the only common divisor of the numerator and denominator is 1 .

Or $\frac{24}{36}=\frac{2}{3} \leftarrow \begin{aligned} & \text { Irreducible } \\ & \text { fraction }\end{aligned}$

Practise

1 Find the divisor used to reduce each starting fraction.

Example:

a)

b)

c)

d)

e)

2 Circle the irreducible fraction that is equivalent to each starting fraction.
a) $\frac{12}{18}=$
$\frac{6}{9}$
$\frac{4}{6}$
$\frac{2}{3}$
b) $\frac{39}{54}=$
$\frac{12}{18}$

$\frac{13}{18}$
$\frac{22}{8}$

$\frac{19}{27}$
$\frac{11}{4}$

$\frac{3}{4}$
$\frac{39}{54}$
$\frac{6}{2}$

Remember to use the divisibility rules to find a common divisor of the numerator and denominator.

3 Solve the problems.
a) Yuri is preparing for his trip to Japan. He has rented an apartment in a building with 48 units. $\frac{1}{3}$ of the apartments in the building are rented by tourists. $\frac{3}{4}$ of the remaining apartments are rented by students. What fraction of the apartments are still free? Write your answer in the form of an irreducible fraction.
\square
b) During a long trip around the world, Marta took photos of 30 different schools: 12 in Asia, 10 in Europe, 5 in Oceania and 3 in South America. What fraction of the total number of school photos do the photos from each continent represent? Write your answers in the form of irreducible fractions.

c) Marion has many beautiful travel books in her bookshelf. She has 9 books on Asia, 10 on Europe, 8 on Oceania and 15 on South America. What irreducible fraction of Marion's travel books do the books from each continent represent?

Continent	Irreducible Fraction
Asia	
Europe	
Oceania	
South America	

d) In the school multi-purpose room, the students in Mr. Maurice's class are presenting their projects on the regions of Québec. Six teams did their projects on the Côte-Nord region. The teams with projects on the Outaouais region take up $\frac{2}{12}$ of the room, and the Laurentides teams take up $\frac{1}{3}$. The remaining teams, whose region was Montérégie, take up the rest of the room.
What fraction of the room do the teams who did projects on the Montérégie and CôteNord regions take up together? Write your answer in the form of an irreducible fraction.
\qquad

e) Alex sets out to discover the regions of Québec, taking 2 different tourist routes. He drives 225 km on the 1st route and then takes a break. Then, he drives 315 km on the 2 nd route before stopping for the night. Each distance he covered equals $\frac{3}{4}$ of the total route length. What is the total length, in kilometres, of each tourist route? 1st route: \square 2nd route: \square

The Prospects Foundation and the principal of Crickets School are organizing a science field trip for the 90 Grade 6 students. The students can choose among 4 places to visit:
\square
$\frac{1}{3}$ of the students choose to visit the natural science museum.
$\frac{2}{5}$ of the students choose to visit the planetarium.
$\frac{1}{6}$ of the students choose to visit the insectarium.
The other students choose to visit the botanical garden.

These are the ticket prices for each of the visits:

Natural Science Museum	Planetarium	Insectarium	Botanical Garden
$\$ 12$ per student	$\$ 11$ per student	$\$ 8$ per student	$\$ 9$ per student

The Prospects Foundation will donate $\$ 575$ to finance the field trip. The school will pay the rest of the costs. How much money will the school have to spend on the Grade 6 students' field trip?

The school will have to spend \square on the Grade 6 students' field trip.

IMEREChotes

Circle the correct answer to each question. Show your work in the calculation spaces.
1 How many hundreds are there in 673829 ?
a) 738
b) 6738
c) 673
d) 82

2 What is the product of 426 and 39 ?
a)

b)

c)

d)

3 What is the sum of $8^{0}+2^{2}+3^{3}$?

a)

b)

c)

d)

4 Which statement is true?
a) 4872 is divisible by 2,3 and 5 .
b) 4872 is divisible by 3,4 and 9 .
c) 4872 is divisible by 2,8 and 9 .
d) 4872 is divisible by 3,4 and 8 .
e) 4872 is divisible by 1,4 and 5 .

5 Which expression is the prime factorization of 900 ?
a) $2 \times 3^{2} \times 5^{3}$
b) $2^{3} \times 3^{2} \times 5$
c) $3^{2} \times 10^{2}$
d) $2^{2} \times 3^{2} \times 5^{2}$
e) $2^{2} \times 5^{2} \times 9$
f) $2^{2} \times 3 \times 5^{2}$

6 What is the measure of angle BCD?
$\frac{C_{C}^{B}}{D}$
a) 45°
b) 130°
c) 145°
d) 135°

7 Which fraction of the figure does the yellow part represent?

a) $\frac{1}{6}$
b) $\frac{1}{3}$
C) $\frac{1}{4}$
d) $\frac{1}{12}$

8 Which fraction is equal to $\frac{48}{72}$ reduced to its simplest form?
a) $\frac{8}{12}$
b) $\frac{4}{6}$
c) $\frac{24}{36}$
d) $\frac{2}{6}$
e) $\frac{2}{3}$
f) $\frac{16}{24}$

Bevitem

Arithmetic

1 Matthew sold $\$ 264$ worth of fair-trade products for a local charity. Represent the sum he collected as 8 bills and 3 coins.

2 Decompose the number 827916 in 3 different ways.
\square
\square
\square

3 Compare the numbers using the correct symbol: $<,>$ or $=$
a) 773377 \square 73377
b) 827277 \square 872272
c) 960065 \square 960056
d) 110010 \square 101010

4 Fill in the rows of the table, starting each time from the given number.

	Add 2 hundreds.	Subtract 15 tens.	Add 22 thousands.	Subtract 5 hundreds.
a) 145789				
b) 325189				
c) 900000				

\square

5 In each flag, colour the numbers divisible by 3 blue, the numbers divisible by 4 green and the numbers divisible by 5 yellow.
a)

	175	
376	27846	

b)

6 Circle the numbers that are divisible by 6 .

43560	39552	66262	430002	561712	43824

7 Do the multiplications.

8 Decompose each number by drawing a factor tree. Write the result in exponential notation.
a)

b)

\square
\square
$231=$

9 Circle the fractions in each group that are equivalent to the 1st fraction.
a) $\frac{2}{3}$
$\begin{array}{llll}\frac{5}{9} & \frac{6}{9} & \frac{2}{9} & \frac{40}{60}\end{array}$
b) $\frac{3}{4} \quad \frac{9}{12} \quad \frac{24}{32} \quad \frac{24}{36} \quad \frac{36}{48}$
c) $\frac{15}{25}$
$\begin{array}{llll}\frac{2}{3} & \frac{3}{5} & \frac{5}{10} & \frac{30}{50}\end{array}$
d) $\frac{4}{9} \quad \frac{12}{18} \quad \frac{20}{45} \quad \frac{44}{99} \quad \frac{70}{80}$

10 Locate the fractions on the number line.

$\frac{2}{3}$	$\frac{1}{2}$	$\frac{5}{6}$	$\frac{1}{3}$	$\frac{1}{12}$

11 Reduce the fractions to their simplest forms.
a)

b)

c) $\frac{9}{63}=$ \square
d)

e)

f) $\frac{6}{27}=$ \square
g)

h)

i)
$\frac{63}{99}=\square$
12. If these tokens \bigcirc represent $\frac{1}{3}$ of a collection of tokens, circle the picture that represents $\frac{4}{3}$ of the tokens.
a)

b)

c)
d)

13 Solve the problems.
a) During his trip to China, Frank got stuck in a huge traffic jam on a 4-lane highway.
If there were 1783 cars in each lane, how many cars were involved in the traffic jam?
\square
b) Angie visited a rice packaging factory while she was in China. She noticed that each packing crate contained 24 boxes of 12 bags of rice. How many bags of rice were there in 87 packing crates?
\square
c) Austin walked 1 km along the Great Wall of China. He counted 1250 bricks just in the bottom row of the wall on one side. The 2 walls on either side of the path each consist of 9 rows of bricks.
How many bricks are there along a 5 km stretch of the path?

Geometry and Measurement

14 Classify the triangles by writing their letters in the correct columns of the table.

15 Measure the angles with a protractor and write the results.
a)

b)

d)

\square

IUse Reasoniting
 Qian's family goes camping for their summer holiday. Every year, they go back to the same provincial park.

There are 4 sectors with campsites in the park.

Each sector is identified by a triangle.

Qian and her family always choose a site in the "scalene" sector.

Near each camping sector, there is a hiking trail that forms a loop.
The length of each trail is described in a list of clues on the sign:

Qian and her family will spend 21 days at the campsite. They will go hiking on $\frac{2}{3}$ of those days. On each of their hiking days, they plan to walk the entire length of the trail in their sector.

How many kilometres will Qian have walked by the end of her holiday?

Secret Suitcase Code

Read the clues, do the addition and then write the digit represented by each suitcase.

Clues

Suitcase Code

\square

$\square=\square$

